Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Augmented Reality (AR) devices offer novel capabilities that can be exploited in AR systems to positively impact human-machine interactions in a variety of future-work and education contexts. This paper presents a systems model for a no-code AR systems framework that can be used to create AR applications that present just-in-time informatics to assist and guide users in the completion of complex task sequences while ensuring operator and environment safety. The salient structural and behavioral aspects of the system, and key use cases are modeled using the Systems Modeling Language (SysML). Representative examples of the model are presented using use case, block definition, internal block, activity, and state-machine diagrams. These models offer new insights into how AR capabilities can be integrated with a variety of engineered systems. In the future such SysML models can steer the design of new tools and an ontology to strengthen connections to domain knowledge.more » « less
- 
            Abstract We report on structural, microstructural, spectroscopic, dielectric, electrical, ferroelectric, ferromagnetic, and magnetodielectric coupling studies of BiFeO3–GdMnO3[(BFO)1–x–(GMO)x], wherexis the concentration of GdMnO3(x= 0.0, 0.025, 0.05, 0.075, 0.1, 0.15, and 0.2), nanocrystalline ceramic solid solutions by auto-combustion method. The analysis of structural property by Rietveld refinement shows the existence of morphotropic phase boundary (MPB) atx= 0.10, which is in agreement with the Raman spectroscopy and high resolution transmission electron microscopy (HRTEM) studies. The average crystallite size obtained from the transmission electron microscopy (TEM) and x-ray line profile analysis was found to be 20–30 nm. The scanning electron micrographs show the uniform distribution of grains throughout the surface of the sample. The dielectric dispersion behavior fits very well with the Maxwell-Wagner model. The frequency dependent phase angle (θ) study shows the resistive nature of solid solutions at low frequency, whereas it shows capacitive behavior at higher frequencies. The temperature variation of dielectric permittivity shows dielectric anomaly at the magnetic phase transition temperature and shifting of the phase transition towards the lower temperature with increasing GMO concentration. The Nyquist plot showed the conduction mechanism is mostly dominated by grains and grain boundary resistances. The ac conductivity of all the samples follows the modified Jonscher model. The impedance and modulus spectroscopy show a non-Debye type relaxation mechanism which can be modeled using a constant phase element (CPE) in the equivalent circuit. The solid-solutions of BFO-GMO show enhanced ferromagnetic-like behavior at room temperature. The ferroelectric polarization measurement shows lossy ferroelectric behavior. The frequency dependent magnetocapacitance and magnetoimpedance clearly show the existence of intrinsic magnetodielectric coupling. The (BFO)1–x–(GMO)xsolid solutions withx= 0.025–0.075 show significantly higher magnetocapacitance and magnetoimpedance compared to the pure BFO.more » « less
- 
            Free, publicly-accessible full text available September 1, 2026
- 
            Free, publicly-accessible full text available July 1, 2026
- 
            The ALICE Collaboration reports measurements of the large relative transverse momentum ( ) component of jet substructure in and Pb-Pb collisions at center-of-mass energy per nucleon pair . Enhancement in the yield of such large- emissions in head-on Pb-Pb collisions is predicted to arise from partonic scattering with quasiparticles of the quark-gluon plasma. The analysis utilizes charged-particle jets reconstructed by the anti- algorithm with resolution parameter in the transverse-momentum interval . The soft drop and dynamical grooming algorithms are used to identify high transverse momentum splittings in the jet shower. Comparison of measurements in Pb-Pb and collisions shows medium-induced narrowing, corresponding to yield suppression of high- splittings, in contrast to the expectation of yield enhancement due to quasiparticle scattering. The measurements are compared to theoretical model calculations incorporating jet modification due to jet-medium interactions (“jet quenching”), both with and without quasiparticle scattering effects. These measurements provide new insight into the underlying mechanisms and theoretical modeling of jet quenching.more » « lessFree, publicly-accessible full text available July 1, 2026
- 
            Abstract This paper presents a study of the inclusive forward J/ψyield as a function of forward charged-particle multiplicity in pp collisions at$$ \sqrt{s} $$ = 13 TeV using data collected by the ALICE experiment at the CERN LHC. The results are presented in terms of relativeJ/ψyields and relative charged-particle multiplicities with respect to these quantities obtained in inelastic collisions having at least one charged particle in the pseudorapidity range |η|<1. The J/ψmesons are reconstructed via their decay intoμ+μ−pairs in the forward rapidity region (2.5< y <4). The relative multiplicity is estimated in the forward pseudorapidity range which overlaps with the J/ψrapidity region. The results show a steeper-than-linear increase of the J/ψyields versus the multiplicity. They are compared with previous measurements and theoretical model calculations.more » « lessFree, publicly-accessible full text available July 1, 2026
- 
            Abstract Event-by-event fluctuations of the event-wise mean transverse momentum,$$\langle p_{\textrm{T}}\rangle $$ , of charged particles produced in proton–proton (pp) collisions at$$\sqrt{s}$$ = 5.02 TeV, Xe–Xe collisions at$$\sqrt{s_{\textrm{NN}}}$$ = 5.44 TeV, and Pb–Pb collisions at$$\sqrt{s_{\textrm{NN}}}$$ = 5.02 TeV are studied using the ALICE detector based on the integral correlator$$\langle \!\langle \Delta p_\textrm{T}\Delta p_\textrm{T}\rangle \!\rangle $$ . The correlator strength is found to decrease monotonically with increasing produced charged-particle multiplicity measured at midrapidity in all three systems. In Xe–Xe and Pb–Pb collisions, the multiplicity dependence of the correlator deviates significantly from a simple power-law scaling as well as from the predictions of the HIJING and AMPT models. The observed deviation from power-law scaling is expected from transverse radial flow in semicentral to central Xe–Xe and Pb–Pb collisions. In pp collisions, the correlation strength is also studied by classifying the events based on the transverse spherocity,$$S_0$$ , of the particle production at midrapidity, used as a proxy for the presence of a pronounced back-to-back jet topology. Low-spherocity (jetty) events feature a larger correlation strength than those with high spherocity (isotropic). The strength and multiplicity dependence of jetty and isotropic events are well reproduced by calculations with the PYTHIA 8 and EPOS LHC models.more » « lessFree, publicly-accessible full text available July 1, 2026
- 
            A<sc>bstract</sc> We report on the measurement of inclusive, non-prompt, and prompt J/ψ-hadron correlations by the ALICE Collaboration at the CERN Large Hadron Collider in pp collisions at a center-of-mass energy of 13 TeV. The correlations are studied at midrapidity (|y| <0.9) in the transverse momentum rangespT<40 GeV/cfor the J/ψand 0.15< pT<10 GeV/cand |η|<0.9 for the associated hadrons. The measurement is based on minimum bias and high multiplicity data samples corresponding to integrated luminosities ofLint= 34 nb−1andLint= 6.9 pb−1, respectively. In addition, two more data samples are employed, requiring, on top of the minimum bias condition, a threshold on the tower energy ofE= 4 and 9 GeV in the ALICE electromagnetic calorimeters, which correspond to integrated luminosities ofLint= 0.9 pb−1andLint= 8.4 pb−1, respectively. The azimuthally integrated near and away side yields of associated charged hadrons per J/ψtrigger are presented as a function of the J/ψand associated hadron transverse momentum. The measurements are discussed in comparison to PYTHIA calculations.more » « lessFree, publicly-accessible full text available July 1, 2026
- 
            Free, publicly-accessible full text available June 1, 2026
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
